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It is shown that it is possible to use a linear regression algorithm direct method

to solve crystal structures from X-ray ¯uorescence holography (XFH) data. It is

found that, in contrast to conventional X-ray structure determination methods,

which do not always work unambiguously, the sustainable method utilizing the

XFH data generally provides the unique phase-retrieval structure solution and

is able, in many cases, to replace the above for determining both the absolute

values (moduli) and phases of structure factors. The XFH ��; '� scan with a

¯uorescing Cu atom from a spherical cluster of a Cu3Au single crystal, at an

energy of 10 keV for the incident unpolarized plane-wave X-radiation, is

numerically simulated to test the performance of the method in ®nding a unique

solution for the structure factors involved in the restoration procedure using the

linear regression algorithm.

1. Introduction

The basic idea of atom-scale resolving holography was ®rst

suggested by SzoÈ ke, (1986), who proposed the use of decay

processes in excited electron shells of atoms as point sources

of monochromatic short-wavelength radiation (e.g. photo-

electrons, short-wavelength ¯uorescent X-rays and so on).

Radiation illuminating an object that consists of individually

scattering atoms provides the interference pattern, which can

be interpreted in terms of Gabor's holography scheme

(Gabor, 1948). Essentially, the point source and scattering

atoms are incorporated into one structure (atom cluster), with

the source-to-object distances being of the order of inter-

atomic spacing in solids, and the point source may be located

either outside or inside the atom cluster. Theoretically, elec-

tron holography was well established in the papers of Barton,

(1988, 1991). It is remarkable that, as the hologram is created

from a single photoemission point source located on an

ordered surface, Barton's transform of the two-dimensional

holographic pattern (hologram function) in general yields a

three-dimensional picture of the surface atom structure

surrounding the emitter. In other words, a hologram recorded

in two angular variables can be transformed into three space

dimensions of an image, thereby displaying plausible positions

of neighbouring atoms (with the twin imaging effect, as for

every atom that is at the point rj a twin atom at the point ÿrj

has to be restored).

Just like electrons, a ¯uorescent X-ray diffraction pattern is

produced as a result of the interference between the point-

source wave originally emitted by a single photoexcited atom

(reference atom) and the waves singly scattered by neigh-

bouring atoms (object). It may be interpreted as a hologram

with the original X-ray ¯uorescent spherical wave as a refer-

ence wave and the scattered waves as the object. The holo-

gram data taken over some spherical surface in the reciprocal

fkg space can be normalized as the hologram function

��k� � �I�k� ÿ I0�k��=I0�k�, where I�k� is the X-ray intensity

detected for the given wavevector k and I0�k� is the corre-

sponding intensity emerging from the ¯uorescing atom in the

absence of an object. Tegze & Faigel (1991) experimentally

realized the X-ray ¯uorescence holography (XFH) direct

scheme. As was ®rst shown, XFH may utilize the coherence

properties of both the spherical wave (reference wave)

emitted by a single ¯uorescing atom and the spherical waves

scattered by neighbouring atoms (object wave), together

forming the two-dimensional holographic pattern in the reci-

procal fkg space. The modern scheme of a multiple-energy

X-ray holography (MEXH) using synchrotron radiation was

®rst proposed by Gog et al. (1995). It should be noticed that

the modern XFH method is based on reciprocal geometry,

where the positions of emitter and detector in the direct

scheme of the XFH are inverted. According to Gog, Len et al.

(1996) and Adams et al. (1998), the modern schemes of XFH

utilize an incident plane-wave radiation as a reference wave,

while ¯uorescing atoms detect the interference holographic

signal. For this, a ¯uorescence yield depends on both the

incidence X-radiation angle and, speci®cally, its energy, which

allows better measurement statistics in the MEXH scheme

(see Fig. 1). The X-ray atomic scale holography scheme has

been the object of numerous experimental and theoretical

studies [see e.g. Gog, Menk et al. (1996) for references of

interest].
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In fact, the MEXH original set-up does not avoid the

`parasitic' XFH signal that contributes to the observed X-ray

hologram. Adams et al. (2000) have suggested recording the

holography data during continuous rotation of the sample

using many sequential revolutions. As was shown, it allows

measurement of the re®ned XFH signal. On the other hand,

the complete solution of the above problem might be the strict

synchronism of simultaneous rotations of both the sample and

the detector. It should be noticed that in an earlier paper

(Novikov et al., 1998) the energy-dispersive detector matched

the sample rotation keeping a constant elevation angle of the

sample surface whereas the detector position was ®xed in the

azimuth direction. This led to a superposition of the MEXH

pattern and an azimuth scan of the XFH pattern recorded at

an exit angle. The observed MEXH patterns were `an azimuth'

mixture of the pure MEXH and XFH signals but it appeared

to be possible to subtract the XFH trace from the experi-

mental MEXH data set (Novikov et al., 1998). Recently, in

Chukhovskii et al. (2002), the theoretical formation of the

XFH pattern within the direct geometry is treated in the frame

of classical electrodynamics and the experimental Fe K�
holograms from an Fe single crystal are used for the atom

position mapping inside the unit cell by use of the new

modi®ed transform versus Barton's transform algorithm.

Despite the large number of attempts to utilize the

experimental XFH data for the samples that now exist, very

few crystal structures are relevant for good reconstruction

imaging. That is why for XFH the Barton transform ®rst

suggested for photoelectron holography has not been

explored in detail and has often been `trial and error'. Until

now, Barton's transform has not been approved for structure

restoration only dealing with the atom position mapping

inside the unit cell from the XFH data. Speci®cally, the XFH

differs from the photoelectron holography not only in much

higher noise levels but also because of the polarization

properties of the X-ray spherical waves generated by scat-

tering atoms, which coherently contribute to the holography

signal [the XFH ��; '� scan].

Before proceeding further, it is important to clarify some

issues about structure determination using conventional X-ray

diffraction. It is common in structural crystallography that the

experimental moduli of structure factors may only be feasible

using the conventional X-ray diffraction techniques.

As is well known, the Fourier transform using the experi-

mental moduli of structure factors with the corresponding

phases someway restored determines a crystal structure. In

order to solve the central problem of structural crystal-

lography to retrieve the phases of structure factors using their

moduli as constraints, diverse mathematical methods are

utilized [for instance, a phase structure invariant method, a

maximum-entropy method etc.; see Giacovazzo, (1998) for

details]. Unfortunately, the data set of the structure-factor

moduli is non-convex, which is the mathematical reason why

the conventional X-ray diffraction methods explore multiple

redundant solutions for structure determination if no limits on

the phase of any of the structure factors under consideration

are imposed (see e.g. Landree et al., 1997; Giacovazzo, 1998).

In this paper, we treat the issue of structure determination

using the XFH data in the full sense, without placing any limits

on the phases of structure factors to be restored. Moreover, we

show that the XFH method is all-suf®cient since it allows one

to determine both the phases and moduli of structure factors

in the frame of one restoration procedure, ensuring a unique

crystal structure solution. The structure determination issue

is treated using simulated XFH data for a small crystalline

Cu3Au cluster with a ¯uorescing Cu atom. In the scope of

the kinematical approach, incident plane-wave X-radiation

undergoes ®rst-order scattering at atoms adjacent to a ¯uor-

escing Cu atom (see Fig. 2). The interference between the

incident plane wave and an ensemble of secondary phase-

shifted spherical waves yields a Cu K� ¯uorescence hologram

signal as an XFH ��; '� scan.

Figure 1
The MEXH scheme proposed by Gog et al. (1995), Gog, Len et al. (1996)
and Gog, Menk et al. (1996).

Figure 2
Structure of Cu3Au with the ¯uorescing Cu atom at the unit-cell centre.



2. Theoretical background

Let an incident plane wave E�r� � E0 exp�ik � r� be elastically

scattered inside a medium and generate an X-ray ¯uorescence

signal from a detecting atom located at the reference point

r � 0. Apparently, the wave®eld D�r�jr�0 is a superposition of

the incident plane wave (reference wave) and the single-

scattered spherical waves (object wave) and is de®ned within

the kinematical approach as:

D�r�jr�0 � E0 � �1=4�� R d3r0  �r0��ÿk2g�jr0j���E0 ÿ n�n � E0��
� exp�ik � r0�; �1�

where g�r� � exp�ikr�=r is the point-like-source function,

k � kj is the wavevector of the incident plane wave, jjj � 1,

the susceptibility function  �r� is de®ned as  �r� �
ÿ4�re��r�=k2 and is proportional to the electron charge

density (ECD) function ��r�, r � rn; jnj � 1; re is the classical

radius of an electron, re � 2.818�10ÿ15 m.

In the case of an incident unpolarized plane-wave radiation,

the known relationship can be used (Landau & Lifshitz, 1959):

hE0pE�0qi � 1
2 jE0j2��pq ÿ �p�q� �p; q � 1; 2; 3�

(the superscript symbol * means a complex conjugate

expression; �pq is the Kroneker symbol: �pq � 1 for p = q and

�pq � 0 for p 6� q, p, q = 1, 2, 3), and the straightforward

evaluations then yield the hologram function as follows [cf. the

corresponding expression in Adams et al. (1998)]:

��k� � re

R
d3r �1� �n � j�2�fcos�k�j � r� r��=rg��r�: �2�

In general, the present expression differs from the corre-

sponding one for the electron hologram function by the

polarization-dependent term of �n � j�2 within the integrand of

the right-hand side of equation (2). Also, notice that for the

traditional XFH scheme the hologram function ��k� can be

obtained from the above expression by altering the sign of the

unit wavevector j in the cosine term of the right-hand side of

equation (2).

One step further, we use the Fourier representation of the

ECD function �(r) as the sum of the reciprocal-space ��h�
harmonics over the reciprocal diffraction vectors of h as

follows:

��r� �P
h

��h� exp�ih � r�: �3�

Noteworthy is the fact that, in many cases, the ECD ��h�
harmonics may be replaced by the corresponding structure

factor F�h� using the well known relationship (V is a crystal

unit-cell volume)

��h� � F�h�=V:

In the case of a spherical absorbing cluster, and after

insertion of (3) into (2), the straightforward evaluations yield

��k� � �2�re=k2�P
h

��h�f �k; h�;

f �k; h� � fspher�k; h� � fpolar�k; h�;
�4�

where each partial h term of ��h�f �k; h� represents by itself the

product of the Fourier ECD ��h� harmonics and dimensionless

scattering function f �k; h�. The latter in turn is a superposition

of two terms, the polarization-independent one [cf. the

corresponding expression in Adams et al. (1998)]:

fspher�k; h� � ÿ k2

k2 ÿ �h� k�2 ÿ
k2

k2 ÿ �hÿ k�2 �h 6� 0�; �5�

and the polarization-dependent one:

fpolar�k; h� � fln�ÿi�k� jh� kj�� ÿ ln�ÿi�kÿ jh� kj��g

� 3k�k2 � h � k�2
jh� kj5 ÿ k3

jh� kj3
� �
ÿ 2k4�k2 � h � k�2
jh� kj4�k2 ÿ jh� kj2� �

2k2

jh� kj2

ÿ 4�k2 � h � k�
jh� kj4 ÿ fln�i�kÿ jhÿ kj��

ÿ ln�i�k� jhÿ kj��g 3k�k2 ÿ h � k�2
jhÿ kj5 ÿ k3

jhÿ kj3
� �

ÿ 2k4�k2 ÿ h � k�2
jhÿ kj4�k2 ÿ jhÿ kj2� �

2k2

jhÿ kj2

ÿ 4�k2 ÿ h � k�
jhÿ kj4 �h 6� 0�; �6�

respectively.

Correspondingly, the h-zero partial scattering functions are

equal to

fspher�k; 0� � 0:5; �7�
fpolar�k; 0� � 2�0:25ÿ 2� C� ln 2� � ÿ0:9593 �8�

(C is Euler's constant, C = 0.5772156649).

It should be noted that the scattering function f �k; h� term

speci®ed by (4)±(6) as a function of the wavevector k contain

the singularities at the positions of Kossel lines de®ned by the

well known equations k � jh� kj but not at the `accidental'

points k � �h.

For reference, to calculate the correct partial contribution

connected with the reciprocal-lattice vectors of �h to the

entire hologram function ��k� one needs to summarize both

the corresponding ��h� terms and �ÿh� terms of ��h�f �k; h�
and ��ÿh�f �k;ÿh� provided that the ECD ��h� harmonics

identity, ��h� � ��ÿh��, and the scattering function identity,

f �k; h� � f �k;ÿh��, take place.

Now a very big difference between the XFH method and

conventional X-ray diffraction methods becomes clear in the

context of X-ray structure determination. In the case of

conventional X-ray diffraction methods, one deals with

diffraction patterns where only the moduli sets, fj��h�jg, are

feasible to be measured. Then, for phasing a diffraction

pattern, i.e. ®nding the phase set fIm�ln ��h��g, one has to use

diverse mathematical procedures, each of which in general

yields multiply redundant structure solutions (see e.g. Landree

et al., 1997; Giacovazzo, 1998). In contrast, the X-ray hologram

function ��k� depends on a linear superposition of the

���h�f �k; h� � ��h��f �k; h��� terms. The latter does mean that

X-ray holography may be directly applied to determine

structure factors, becoming an ab initio technique.
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In practice, to put the XFH method into context, one

needs to restore the ECD ��h� harmonics, ��h� �
Re���h�� � iIm���h��, by using the two-dimensional XFH

��; '� scan measured to some high degree of accuracy

provided that the absolute value of a wavevector k is ®xed.

The `experimental' data ��k� are measured in the form of the

XFH ��; '� scan where ' is the azimuth angle and � is the

elevation angle of the incident radiation [see Fig. 3 for details;

recall that k � kj��; '�, where jktj � k and jj��; '�j � 1].

Noteworthy is the fact that the above robust equation (2)

for the X-ray hologram function does work if the double- and

multiple-scattering (extinction) processes of an incident plane

wave might be neglected.

3. Linear regression method for restoring structure
factors

Let us consider a data set of �ij � ���i; 'j� with the array size

I � J (i = 1, 2, 3, . . . , I; j = 1, 2, 3, . . . , J) and introduce the

matrices Â�h� and B̂�h�, the matrix elements of which are

Aij�h� � 2Re fij�h�;
Bij�h� � ÿ2Im fij�h�:

�9�

Correspondingly, (4) can be rewritten in terms of the real

and imaginary parts of the ECD �(h) harmonics as follows:

�ij �
P

n

fAij�hn�Re���hn�� � Bij�hn�Im���hn��g; �10�

where the sum is taken over the consolidated number

n � �H;K;L� of diffraction re¯ections (the Miller indices H,

K, L are integer; for instance: for L = 1, . . . , Lmax and H =

0,�1, . . . ,�Hmax and K = 0,�1, . . . ,�Kmax; for L = 0 and H =

0, �1, . . . ., �Hmax and K = 1, . . . , Kmax; for L = K = 0 and H =

0, 1, . . . , Hmax, the array size of the reciprocal-lattice vector

set N is equal to 4HmaxKmaxLmax + 2(HmaxKmax + HmaxLmax

+ Kmax Lmax) + Hmax + Kmax + Lmax).

By using the standard least-squares method that in our case

reduces to ®tting a plane de®ned by equation (10) to a set of

points Ref��h�g and Imf��h�g, the so-called linear regression

procedure (see e.g. Barnard & Skillicorn, 1992), one simply

inverts (10) into the searching relationship for the real and

imaginary parts of the ECD ��hm� harmonics, namely:

Re���hm�� �
Det R̂m

Det M̂
;

Im���hm�� �
Det Îm

Det M̂
;

�11�

where the matrices M̂, R̂m and Îm, each with array size

2N � 2N, are given by

M̂ � M̂11 M̂12

M̂21 M̂22

 !
;

R̂m �
R̂m;11 M̂12

R̂m;21 M̂22

 !
;

Îm �
M̂11 Îm;12

M̂21 Îm;22

 !
:

�12�

Here the matrices M̂11, M̂12, M̂21 and M̂22, each with array size

N � N, are de®ned as:

�M̂11�nm �
P
i;j

Aij�hn�Aij�hm�=h"2
iji

�M̂12�nm �
P
i;j

Aij�hn�Bij�hm�=h"2
iji

�M̂21�nm �
P
i;j

Bij�hn�Aij�hm�=h"2
iji

�M̂22�nm �
P
i;j

Bij�hn�Bij�hm�=h"2
iji

�n;m � 1; 2; . . . ;N� �13�

and the matrices R̂m;11 and R̂m;21, Îm;11 and Îm;21, each with the

array size N � N, can be obtained from the corresponding

matrices M̂ by replacing the mth columns as:

R̂m;11 � M̂11j 2 �M̂m;11�nm )
P

ij

�ijAij�hn�=h"2
iji

�n � 1; 2; . . . ;N�;
R̂m;21 � M̂21j 2 �M̂m;21�nm )

P
ij

�ijBij�hn�=h"2
iji

�n � 1; 2; . . . ;N�;
Îm;12 � M̂12j 2 �M̂m;12�nm )

P
ij

�ijAij�hn�=h"2
iji

�n � 1; 2; . . . ;N�;
Îm;22 � M̂22j 2 �M̂m;22�nm )

P
ij

�ijBij�hn�=h"2
iji

�n � 1; 2; . . . ;N�:

�14�

Herein h"2
iji is the mean-square error of the XFH �ij scan

measured at the point �i; j�.
Thus, the XFH procedure for determining a crystal struc-

ture is based upon (11)±(14) with the known (experimentally

measured) data set f�ijg and the scattering matrices Â�h� and

B̂�h� given by (4)±(9), which are evaluated within the model of

a small crystalline cluster and unpolarized incident plane-wave

radiation. Clearly, in the case of centrosymmetric crystals

equations (11)±(14) can be reduced by putting B̂�h� � 0, and

only the solutions for structure-factor sets fRe���h��g have a

sense since fIm���h��g � 0.

Lastly, `structure-factor error' equations, albeit not rigorous,

that might accommodate counting statistics errors are

Figure 3
Geometry of the simulated two-dimensional XFH ��; '� scan. The
azimuth angle ' and the elevation angle � are measured with respect to
the (001) surface of the Cu3Au sample.



required and they are beyond the `structure-factor' equations

(11)±(14). Supposing that the statistical �ij distribution for

each point �i; j� tends to be Gaussian and assuming that

r.m.s. errors �m � h�Re��hm��2i1=2, �m � h�Im ��hm��2i1=2 are

mutually independent for all the hm diffraction re¯ections, one

obtains the following `structure-factor error' equations [cf.

equations (11)±(14)]:

�m � Det�X̂m�=Det�P̂�;
�m � Det�Ŷm�=Det�P̂�:

�15�

Here the matrices X̂m; Ŷm and P̂, each with array size

2N � 2N, are given by

P̂ � P̂11 P̂12

P̂21 P̂22

 !
;

X̂m �
X̂m;11 P̂12

X̂m;21 P̂22

 !
;

Ŷm �
P̂11 Ŷm;12

P̂21 Ŷm;22

 !
;

�16�

where the matrices P̂11, P̂12, P̂22 and P̂22, each with array size

N � N, are de®ned as:

�P̂11�nm �
P
i;j

A2
ij�Hn�A2

ij�Hm�=h"2
iji2

�P̂12�nm �
P
i;j

A2
ij�Hn�B2

ij�Hm�=h"2
iji2

�P̂21�nm �
P
i;j

B2
ij�Hn�A2

ij�Hm�=h"2
iji2

�P̂22�nm �
P
i;j

B2
ij�Hn�B2

ij�Hm�=h"2
iji2

�n;m � 1; 2; ::;N� �17�

and the matrices X̂m;11 and X̂m;21, Ŷm;12 and Ŷm;22, each with

array size N � N, can be obtained from the corresponding

matrices P̂ by replacing the nth columns as:

X̂m;11 � P̂11j 2 �P̂m;11�nm )
P

ij

A2
ij�hn�=h"2

iji

�n � 1; 2; . . . ;N�;
X̂m;21 � P̂21j 2 �P̂m;21�nm )

P
ij

B2
ij�hn�=h"2

iji

�n � 1; 2; . . . ;N�;
Ŷm;12 � P̂12j 2 �P̂m;11�nm )

P
ij

A2
ij�hn�=h"2

iji

�n � 1; 2; . . . ;N�;
Ŷm;22 � P̂22j 2 �P̂m;22�nm )

P
ij

B2
ij�hn�=h"2

iji

�n � 1; 2; . . . ;N�:

�18�

Noteworthy is the fact that equations (15)±(18) for estimating

errors �m and �m provide means of controlling the progress of

the ECD ��hm� harmonics restoration within the scope of the

XFH method based on the measured sets f�ijg, h"2
iji and the

calculated matrices Â�hm� and B̂�hm�. In fact, equations (15)±

(18) might be modi®ed including the error matrix to take into

account the correlation effects between errors for different

diffraction re¯ections. At the same time, the above `structure-

factor error' equations seem to be simple enough, giving

insight into the accuracy of the plausible ECD ��hm� har-

monics under determination.

Below, the structure determination procedure is attempted

by the use of the XFH data set f�ijg numerically simulated

with equations (4)±(8) for the ¯uorescing Cu atom incor-

porated into the small spherical crystalline Cu3Au cluster.

4. Numerical simulation. Results and discussion

The test case we consider is the `quasi' f.c.c. centrosymmetric

Cu3Au structure commonly used for the XFH experiments

(see e.g. Novikov et al., 1998; Adams et al., 1998, 2000). The

Cu3Au structure shown in Fig. 2 has a cubic unit cell with the

¯uorescing Cu atom at the unit-cell centre, the cell parameter

a = 0.348 nm. Let the elevation angle of the incident radiation

� be counted from the z axis, 0 � � � �, the azimuth angle '
be counted around the z axis, 0 � '< 2� (see Fig. 3). The true

structure factors F(h) for the array size N = 243 speci®ed by

the condition �H2 � K2 � L2�1=2 < 5 were calculated using the

analytical X-ray atomic scattering-factor representation

fCu�Au� �
P

u�1;...;5

QCu�Au�;u exp�ÿPCu�Au�;uh2=16�2� � TCu�Au�

valid for the full range of jhj=2� from 0.0 to 120.0 nmÿ1 and

the corresponding coef®cients TCu�Au� and QCu�Au�;u, PCu�Au�;u
for u = 1, 2, . . . , 5 are taken from Waasmaier & Kirfel (1995)

(for simplicity, the corresponding Debye±Waller factors are

put to zero). The entire number N of the true structure factors

is equal to 243. Owing to the Cu3Au structure symmetry (see

below), the number of different-valued structure factors is 22

(Fig. 4). The numerically simulated XFH ��; '� scans for the

360� azimuth ', the step �' � 1, and the elevation � from 20

to 90�, the step �� � 1, at the energy of 10 keV of the incident

X-radiation are displayed in Fig. 5. The cases (a)±(c) of Fig. 5

are related to: (a) the partial XFH ��; '� scan evaluated using

the polarization-independent scattering functions fspher�k; h�;
(b) the partial XFH ��; '� scan evaluated using the polariza-

tion-dependent scattering functions fpolar�k; h�, and (c) the
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Figure 4
The normalized structure factors, calculated under condition
�H2 � K2 � L2�1=2 < 5 for the Cu3Au structure are plotted using
analytical X-ray atomic scattering-factor representation valid for the full
range of jhj=2� from 0.0 to 120.0 nmÿ1 (Waasmaier & Kirfel, 1995). The
number of different-value structure factors is 22.
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added XFH ��; '� scan. It is clearly seen that both the partial

XFH ��; '� scans comparably contribute to the added XFH

��; '� scan. Generally, the numerically simulated XFH pattern

is represented by the superposition of Kossel lines,

k � jh� kj, that relate to the different reciprocal-lattice

vectors h [see e.g. Fig. 6 where the one-dimensional XFH

�� � 50�; '� scan is depicted]. Because of the fourfold axis

symmetry around the [001] direction and mirror plane normal

to the [110] direction for the Cu3Au structure, the XFH ��; '�
scans possess the azimuth `90� translation' symmetry, and each

fourth part of the XFH ��; '� scans has the azimuth `45�

symmetry' (cf. Figs. 5a±c).

Then, aiming to test the general restoration procedure, the

m3m point symmetry of the Cu3Au structure (except for the

point symmetry group �1) was ignored and further all the 243

true structure factors contributing to the numerically simu-

lated added XFH ��; '� scan in Fig. 5(c) were an object of

restoration.

The corresponding scattering functions f �k; h� were

explored to prepare the matrix
P

i;j Aij�hn�Aij�hm� and the

vector column
P

i;j �ijAij�hn� for solving the linear matrix

equation [see equations (11)±(14)]. For the sake of simplicity,

while solving the linear matrix equation for structure factors,

all the mean-square errors h"2
iji were assumed to be the same

and constant. Accordingly, using the linear regression algor-

ithm code (Barnard & Skillicorn, 1992), all the 243 structure

factors of interest were restored. The relative errors of the

non-zero structure factors restored were in general equal to

10ÿ5±10ÿ6. Owing to the m3m point symmetry of the Cu3Au

structure, 25 structure factors are crystallographically different

and only 22 are different valued amid the 243 structure factors

under restoration. The relative errors and values of the

restored 25 structure factors (22 different-valued ones) in

comparison with the true ones are listed in Table 1.

5. Concluding remarks

In this paper, the goal of our study is to unveil a good XFH

method for purposes of structural X-ray crystallography. The

key point of the XFH is the fact that it provides a robust

unambiguous procedure to solve a crystal structure. The test

above carried out in a linear regression algorithm fashion in

the case of a numerically simulated XFH ��; '� scan for the

small spherical crystalline Cu3Au cluster leads to an optimistic

conclusion. In fact, the non-hybrid XFH method is really

unambiguous to restore both the moduli and phases of the

crystal structure factors and becomes an ab initio technique. It

is essential that as the conventional X-ray diffraction tech-

niques utilize rather complicated and sophisticated mathe-

matical models, the XFH method does work well for the

structure-factor determination using the linear regression

algorithm code.

A few ®nal comments are appropriate here about the

implementation of the present mathematical algorithm to the

Figure 6
The one-dimensional XFH scan calculated for the ®xed value of the
elevation angle � = 50� is shown as a function of the azimuth angle '. The
diffraction re¯ections (h) mainly contributing to the one-dimensional
XFH scan are chosen.

Figure 5
The XFH ��; '� scans for the 360� azimuth ', step �' � 1, and the
elevation � from 20 to 90�, step �� � 1, at an energy of 10 keV for the
incident X-radiation, are numerically simulated: (a) the polarization-
independent XFH ��; '� scan; (b) the polarization-dependent XFH ��; '�
scan; (c) the added XFH ��; '� scan. The ¯uorescing Cu atom is at the
centre of the Cu3Au unit cell. The total number of diffraction re¯ections
(h) contributing to the XFH ��; '� scans is 243.



X-ray structure determination. As is pointed out above, an

object wave is treated within the scope of the kinematical

approach, i.e. it is formed as a result of single scattering of a

reference wave by neighbouring atoms adjacent to a detecting

(¯uorescing) atom. Dynamical scattering (primary and

secondary extinctions) and absorption of the object wave were

not taken into consideration. Besides, the model of the inci-

dent unpolarized plane-wave radiation was used to meet the

requirements of the linear regression algorithm code. On

the other hand, the theoretical calculations may be readily

generalized for the case of incident linearly polarized plane-

wave radiation; it is a subject of future work. With the above

con®nes of the linear regression algorithm code, we do not

claim anything except that the XFH method does work well

not using any other information regarding either moduli or

phases of the structure factors of interest. How well it will

work in practice, particularly taking into account appropriate

extinction effects, polarization and coherence properties of

the incident X-radiation, remains to be seen and is a topic of

future work. Evidently, the corresponding corrections should

be introduced into the basic scattering functions to develop

and improve the linear regression algorithm code. Another

point is that the above theoretical formalism is valid in the

case of single ¯uorescing atoms, which occupy the translation-

equivalent crystallographic positions, create the XFH signal

and, hence, for such atoms the `individual' XFH ��; '� scans

are identical. In this sense, while the gold atoms physically

occupy one equivalent position, the copper atoms are located

at the three non-equivalent positions in the unit cell of the

Cu3Au structure. Therefore, the XFH ��; '� scan with the

¯uorescing Cu atom is governed by the corresponding average

structure factor hF�h�i, namely: the structure factor F�h�
should be substituted by the average one as

hF�h�i � 1
3 F�h� P

t�1;...;3

exp�ih � rt�

� 1
3 F�h�fexp�i��H � K�� � exp�i��K � L��
� exp�i��L�H��g:

So, strictly speaking, in the case of a ¯uorescing Cu atom

incorporated into the Cu3Au structure, the average structure-

factor set fhF�h�ig may be the restoration procedure object

from the experimental XFH data. It is interesting that, as

follows from the above, the phase information for structure

factors is unfeasible from the XFH data measured for

monoatomic crystals.

Also, testing the linear regression algorithm code, we did

not include the noise ���; '� that accompanies the XFH ��; '�
scan in experiment, the value of which is in general given by

the XFH counting statistics and might be taken in account

with `structure-factor error' equations (15)±(18). How well

they will work for estimating the accuracy of structure factors

determined from the XFH data remains to be seen and is of

special interest for future work. To be speci®c, it should be

noticed that in practice the noise and other artefacts are

removed from the experimental XFH data by ®ltering

(Novikov et al., 1998; Chukhovskii et al., 2002).

It should once more be stated in conclusion that both the

feasibility and good skill of the linear regression algorithm

direct method tested for the model Cu3Au structure from a

numerically simulated XFH ��; '� scan could facilitate further

the development of the XFH technique that is of great

interest. Noteworthy is the fact that the present treatment

shows the great capacity of atom-resolving XFH for structure

determinations. By improving the experimental XFH counting

statistics and simultaneously solving some theoretical issues

mentioned, the atom-resolving XFH method could be

favourably applied to structure investigation of low-quality

organic single crystals, catalysts or dilute solid solutions. It

could become an effective tool for the electron charge-density

restoration of crystalline materials and the structure investi-

gation of low-quality organic single crystals, a good topic for

future work.

One of authors (FNC) is deeply indebted to Dr B. Adams,

Dr R. Eisenhower, Dr D. Novikov, Professor G. Materlik and

Professor A. SzoÈ ke for fruitful discussions.
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